2 research outputs found

    Off-Diagonal Deformations of Kerr Metrics and Black Ellipsoids in Heterotic Supergravity

    Full text link
    Geometric methods for constructing exact solutions of motion equations with first order α′\alpha ^{\prime} corrections to the heterotic supergravity action implying a non-trivial Yang-Mills sector and six dimensional, 6-d, almost-K\"ahler internal spaces are studied. In 10-d spacetimes, general parametrizations for generic off-diagonal metrics, nonlinear and linear connections and matter sources, when the equations of motion decouple in very general forms are considered. This allows us to construct a variety of exact solutions when the coefficients of fundamental geometric/physical objects depend on all higher dimensional spacetime coordinates via corresponding classes of generating and integration functions, generalized effective sources and integration constants. Such generalized solutions are determined by generic off-diagonal metrics and nonlinear and/or linear connections. In particular, as configurations which are warped/compactified to lower dimensions and for Levi-Civita connections. The corresponding metrics can have (non) Killing and/or Lie algebra symmetries and/or describe (1+2)-d and/or (1+3)-d domain wall configurations, with possible warping nearly almost-K\"ahler manifolds, with gravitational and gauge instantons for nonlinear vacuum configurations and effective polarizations of cosmological and interaction constants encoding string gravity effects. A series of examples of exact solutions describing generic off-diagonal supergravity modifications to black hole/ ellipsoid and solitonic configurations are provided and analyzed. We prove that it is possible to reproduce the Kerr and other type black solutions in general relativity (with certain types of string corrections) in 4-d and to generalize the solutions to non-vacuum configurations in (super) gravity/ string theories.Comment: latex2e, 44 pages with table of content, v2 accepted to EJPC with minor typos modifications requested by editor and referee and up-dated reference
    corecore